Question 1 Translation

This The	sequence is sequence of	located directly the coding strain	downstream find is given belo	rom a promoter ow: the mARN	omyces cerevis to it is a transcri produced by tra intron in this se	bed sequence.	
5'ca	acccgaaac	gacgtcgta <u>a</u>	gtcccgttca	gggccttcgt	tctcacggta	taacc <u>a</u> tgat	
С	gg <u>t</u> gaccga	actttcagct	g <u>t</u> ctcatggt	gccaacgtca	agcgaagcgg	gggttgttgt	
t	gcgagaatg	tatccttagc	atgatgctgg	cggcgccacg	caaattttct	gagtgtattt	3
1.1			ids of the prote	=	_		
	at position 20): A is replace	in when the onled by T (20 a \rightarrow	r t)	oduced into the	sequence is	
	at position 56	5: A is replace	in when the onled by T (56 a \rightarrow	· t)	oduced into the	e sequence is	
	at position 64	1: T is replace	in when the onl d by A (64 t \rightarrow ds	a)	oduced into the	e sequence is	
	at position 82	2: T is replace	in when the onl d by A (82 t →	a)	oduced into the	sequence is	
	at position 1	•	ed during DNA	-	oduced into the stuttering	sequence is	
1.7		27 amino acid	S				
You					at you have to o		
Sequ	uence of prim	er 1 : 5'	cacccgaa	ac gacgtcgt	caa	3'	
Sequ	uence of prim	er 2 : 5'	aaataca	ctc agaaaat	ttg	3'	

Question 2

During translation, the energy cost of one round of elongation is

A. 1 ATP D.1ATP + 2GTPB. 1 GTP E. 2 ATP + 2 GTP

C. 3 ATP

To attach an amino acid to the corresponding tRNA: the equivalent of 2 ATP are used. ATP \rightarrow AMP + Pi + Pi represents the same energy cost as 2 ATP \rightarrow 2 ADP + 2 Pi

During elongation each elongation factor (eEF-1 and eEF-2) hydrolyses one GTP→ GDP

Question 3

Amino acids are attached to

a. the 3' end of tRNA

b. the 5' end of tRNA

Question 4

What amino acid should be attached to a tRNA with the anticodon sequence 5'-UGA-3'?

Base pairing must be anti-parallel:

on tRNA Anticodon 3' - A G U - 5'

on mRNA Codon $5' - U C A - 3' \rightarrow Serine$

Second mRNA base											
	U		С		A		¦ G				
First mRNA base (5' end of codon)	U	บบบ	Phe	ucu -	Ser	UAU	Tyr	UGU	Cys	U	
		ບບင		UCC		UAC].,.	UGC	Joyo	С	
		UUA -	Leu	UCA		UAA	Stop	UGA	Stop	Α	
		บบด_		UCG_		UAG	Stop	UGG	Trp	G	_
	С	cuu-	Leu	ccu -	Pro	CAU	٦	CGU]	U	end of codon
		cuc		ccc		CAC	His	CGC	A	С	of C
		CUA		CCA		CAA	GIn	CGA	Arg	Α	ğ
		CUG_		CCG_		CAG		CGG		G	3,
		AUU]	ACU -	Thr	AAU	7	AGU	Sor.	U	ase
	A	AUC	Met or	ACC		AAC	Asn	AGC	Ser	С	ΑÞ
		AUA_		ACA		AAA	Lvo	AGA	Arg	Α	n R
		AUG		ACG_		AAG	Lys	AGG	Aig	G	Third mRNA base
	G	GUU ¯	Val	GCU -	Ala	GAU	7	GGU	1	U	Ę
		GUC		GCC		GAC	Asp	GGC	01	С	
		GUA		GCA		GAA	Glu	GGA	Gly	A	
		GUG_		GCG_		GAG		GGG		G	

Question 5

When one of the enzymes linking amino acids to tRNA makes a mistake (e.g. an Alanine is linked to a tRNA with a 5' CCC 3' anti-codon assigned to Glycine), what is the consequence?

- a. the tRNA will not participate to translation because it will be unable to bind eEF-1.
- b. the tRNA will not participate to translation because it will be unable to bind eEF-2.
- c. the tRNA will not participate to translation because it will be rejected by the ribosome.
- d. the tRNA will participate to translation and an Alanine will be incorporated instead of a Glycine in one protein.

The 20 enzymes loading amino acids onto tRNA carry the entire responsibility for the accuracy of their job. There is no quality control downstream from these enzymes. The ribosome checks only the codon / anti-codon pairing, nothing else.